Chapter 4
 Sample Design

TARGET POPULATION AND OVERVIEW OF THE SAMPLING DESIGN

The desired base PISA target population in each country/economy consisted of 15 -year-old students attending educational institutions in grades 7 and higher. This meant that countries/economies were to include:

- 15-year-old students enrolled full-time in educational institutions
- 15-year-old students enrolled in educational institutions who attended only on a part-time basis
- students in vocational training programmes, or any other related type of educational programmes
- students attending foreign schools within the country/economy (as well as students from other countries/economies attending any of the programmes in the first three categories).

It was recognised that no testing of 15 -year-old students schooled in the home, workplace or out of the country/economy would occur and therefore these 15 -year-olds are not included in the international target population.

The operational definition of an age population directly depends on the testing dates. The international requirement was that the assessment had to be conducted during a 56-day period, referred to as the testing period, between March $1^{\text {st }}, 2018$ and August $31^{\text {st }}, 2018$, unless otherwise agreed.

Further, testing was not permitted during the first six weeks of the school year because of a concern that student performance levels may have been lower at the beginning of the academic year than at the end of the previous academic year, even after controlling for age.

The 15 -year-old international target population was slightly adapted to better fit the age structure of most Northern Hemisphere countries/economies. As most of the testing was planned to occur in April, the international target population was consequently defined as all students aged from 15 years and 3 completed months to 16 years and 2 completed months at the beginning of the assessment period. This meant that in all countries/economies testing in April 2018, the target population could have been defined as all students born in 2002 who were attending an educational institution, as defined above.

A variation of up to one month in this age definition was permitted. This allowed a country/economy testing in March or in May to still define the national target population as all students born in 2002. If the testing took place between June and December, the birth date definition had to be adjusted so that in all countries/economies the target population always included students aged 15 years and 3 completed months to 16 years and 2 completed months at the time of testing, or a one-month variation of this.

In all but one country, Russia, the sampling design used for the PISA assessment was a twostage stratified sample design. The first-stage sampling units consisted of individual schools having 15 -year-old students, or the possibility of having such students at the time of assessment. Schools were sampled systematically from a comprehensive national list of all

PISA-eligible schools, known as the school sampling frame, with probabilities that were proportional to a measure of size. The measure of size was a function of the estimated number of PISA-eligible 15-year-old students enrolled in the school. This type of sampling is referred to as systematic probability proportional to size (PPS) sampling. Prior to selecting them, schools in the sampling frame were assigned to mutually exclusive groups based on school characteristics called explicit strata. These were formed to improve the precision of samplebased estimates. Stratification variables for each country/economy are presented in Table 14.1

Table 4.1: Stratification variables used in PISA 2018

Country/Economy	Explicit stratification variables	Number of explicit strata	Implicit stratification variables
Albania	Locations (2); Geographical division (3); Funding (2); Certainty selections	13	ISCED level (3), Gender (5)
Argentina	Region (10); Sector (2)	20	Subregion (20); Department (19); Location (2); Performance (5); Education level (8)
Australia	State/Territory (8); Sector (3); TAFE (2); Certainty selections	26	Urbanisation (3); School gender composition (3); School socioeconomic level (11); ISCED level (3)
Austria	Rest of Austria/Oberoesterreich (2); Programme - for Rest of Austria (17); Oberoesterreich programme group (8); Certainty selections	26	School Type (4); Region (9); OOE programme (18); Percentage of girls (5)
Baku City (Azerbaijan)	Urbanicity (2); Language (2); Status/Funding (2); Certainty selections	8	Postal code (135)
Belarus	School Location (2); School Type (5);	10	ISCED Level (3)
Belgium	Region (3); Form of education - Flanders (5),French Community (3), German Community (2); Funding - for Flanders only (2); ISCED level (4), Educational tracks - for French and German Communities only (4)	31	Grade repetition (6), Percentage of girls (5); Type of school--for French Community only (5)
Bosnia and Herzegovina	Region (18); ISCED Level (2); Certainty selections	37	Language of instruction/curriculum (4); Urbanicity (2); ISCED orientation (6)
Brazil	Region (5); Funding (4)	20	State (27); ISCED level (5); Urbanisation (2); Capital/Country (2); HDI Quintiles (5); School gender composition (3)
Brunei Darussalam	School Governance (4); School Composition (3);	7	Sixth Form (3); District (4)
B-S-J-Z (China)	Area (4); Urbanisation (3); ISCED programme orientation (2); ISCED level (3), Certainty selections	46	Selectivity (3); Funding (2)
Bulgaria	Region (11)	11	Type of school (7); Size of settlement (5)
Canada	Province (10); Language (2); School size (4); Certainty selections	68	Urbanisation (3); Funding (2); ISCED level (3)
Chile	School Type (4); School level (3); School track (4);	14	School Type - for Private schools only (3), for other schools (1); National test score level (4); Percentage of girls (6); Urbanicity (2); Geographic zone (4)
Colombia	Region (4); Urbanicity/School Type (3)	12	Regional entities (95); Main shift (4); School gender composition (5);
Costa Rica	School type (5); Certainty selections	6	Urbanisation (2); School track (2); Shift (2); Region (27); ISCED level (3)
Croatia	Dominant programme type (6); Certainty selections	7	Region (6); School gender composition (3)
Cyprus ${ }^{1}$	ISCED level (3); ISCED programme orientation (3); Funding (2);	7	Urbanisation (2); Language (2)

Czech Republic	Programmes (6); Region for programmes 1 and 2 (14)	32	Region for programmes 3, 4, 5(14); School gender composition (3)
Denmark	Immigrant levels and Faroes (5); Certainty selections	6	School type (7); ISCED level (2); Urbanisation (5); Region (5); FO group (3)
Dominican Republic	Funding (2); Urbanisation (2); ISCED level (3)	11	Shift (6); School size (4); Programme (4)
Estonia	Language (3); Certainty selections	4	School type (3); Urbanisation (2); County (15); Funding (2)
Finland	School type 1 (2); Region (6); Urbanisation (3)	11	Region for school type 1 (6); Urbanisation for school type 1 (3); Regional state administrative agencies - for major regions of Northern \& Eastern Finland and Swedish-speaking regions only (7); School type 2 (7)
France	Region (4); School type (4); School size (3); Certainty selections	23	Funding (2)
FYROM	ISCED level (2); Language (3); ISCED programme (3)	12	Urbanisation (2)
Georgia	Urbanicity (5); Ownership (2); Certainty selections	10	Language (13)
Germany	School category (3); State - for normal schools only (16)	18	State for SEN and vocational schools only (16); School type for normal schools only (6)
Greece	Urbanisation (3)	3	Funding and region (15); School type (3)
Hong Kong (China)	Funding (4)	4	Student Academic Intake (4); School gender composition (3)
Hungary	School type (6)	6	Region (7); Reading performance (6)
Iceland	Region (9); School size (4)	32	Urbanisation (2)
Indonesia	FL and oversampling Region (6)	6	National examination result (3); School type (3); Funding (2); Region (8)
Ireland	School sector (3); School Size (3)	9	School gender composition (4); Socioeconomic quartile (4);
Israel	School orientation (12)	12	ISCED level (3); School size (2); ISCED level (3); Group size (2); Socio-Economic status (3); Geographic/Administrative District (2)
Italy	Region (12); Study programme (5); Certainty selections	60	Region (11); Types of school (2)
Japan	Funding (2); Orientation (2)	4	Levels of proportion of students taking university/college entrance exams (4)
Jordan	School type / Funding (6); Certainty selections	7	Urbanisation (2); School gender composition (3); Level (2); Shift (2)
Kazakhstan	School type (2); Region (16); Certainty selections	18	ISCED Level (2); Location (2); Language (3); Funding (2)
Korea	School level (3); Orientation (2)	4	Urbanisation (3); School gender composition (3)
Kosovo	Region (7); Certainty selections	8	Urbanisation (2); ISCED (3)
Latvia	Urbanisation (4)	4	School type/level (5)
Lebanon	ISCED level (3); Funding (2); Urbanisation (2); Certainty selections	13	School language (3); School gender composition (3)
Lithuania	School language (5); School location - for Lithuanian language (4), for other languages (1); School type - for Lithuanian language (4), for other languages (1); Certainty selections	21	School language - for Lithuanian, Polish, Russian, Russian/Polish (1), Other multi-language (2); School location for non-Lithuanian language (4), for Lithuanian language (1); School type - for non-Lithuanian language schools (4); Nonprivate/Private (2)
Luxembourg	School type (6)	6	School gender composition (4)
Macao (China)	School type (3); Study programme (2); Language (5)	10	School gender composition (3); Secular or religious (2)
Malaysia	School category (6);	9	School type (16); State (4); Location (2); Gender (3); ISCED level (2)
Malta	School orientation/management (3);	3	None
Mexico	School level (2); School type funding(2); School size (3)	12	School program (7); Urbanisation (2)

Moldova	Language (3); Urbanisation (3); ISCED level (3)	26	Funding (2); Study programme (6)
Montenegro	Programme (4); Region (4)	9	School gender composition (3)
Morocco	Region (12)	12	Milieu (2); Type (2)
Netherlands	School track (10)	10	None
New Zealand	School size (3); Certainty selections	4	School decile (4); Funding (2); School gender composition (3); Urbanisation (2)
Norway	School level (2)	2	None
Panama	Sub-system of education (3); Urbanicity (2); Funding (2); Certainty selections	11	Educational region (16); ISCED level (3); Programme orientation (4); Language of test (3)
Peru	Funding (2); Urbanisation (2)	4	Region (26); School gender composition (3); School type (6)
Philippines	Administrative Region (17)	17	School Management (2); Type of Community (2); Type of Private School (3); ISCED Level (3); Gender Composition (5)
Poland	School type (4)	4	Basic Vocational (2); Private/Public (2); Locality size (4); Gender composition (3); School gender composition (3)
Portugal	Geographic region (25); Certainty selections	26	ISCED (3); Funding (2); Urbanisation (3); Curriculum (3)
Qatar	School type (4)	4	Level (5); School gender composition (3); Language (2); Funding (2); ISCED programme orientation (3)
Romania	Programme (2)	2	Language (3); Urbanisation (2); Region (8)
Russia	Region (43)	43	Location/Urbanisation (9); School type (3)
Saudi Arabia	City (11); Gender (2)	22	Type (2); Education District (41); Level (2)
Serbia	School type primary (2); Region - for nonprimary schools only (5), for primary schools (1); School type - for non-primary schools only (4), for primary schools (1); Certainty selections	22	Region implicit (5); School type implicit (7); Language (2)
Singapore	Public/Private (2); School level (2); Certainty selections	4	School Gender composition (3)
Slovak Republic	School type (3); Region (3)	9	Sub-region (8); School type (6); Language (3); Exam (10); ESCS (7); Funding (3); Grade repetition level (29)
Slovenia	Programme/Level (7)	7	Location/Urbanisation (5); School gender composition (3)
Spain	Region (19); Funding (6); Linguistic model - for the Basque region only (3); Certainty selections	44	Linguistic model - for Basque Country only (4)
Sweden	Funding (2); ISCED level (2); Urbanisation for lower secondary only (3)	8	Geographic LAN - for upper secondary only (21); Responsible authority - for upper secondary only (3); Level of immigrants (3); Income Quartiles - for lower secondary/mixed only (4)
Switzerland	Language (3); ISCED level (3); Urbanisation (2)	16	Sponsorship (2); School type (41); Canton (26); Foreign speaking student share (3)
Chinese Taipei	School type (6); Funding (2); Location (3); Certainty selections	36	Region (6); School gender composition (3); Municipality (2); Shift offerings (2)
Thailand	Administration (7); ISCED level (3); Certainty selections	15	Region (9); Urbanisation (2); School gender composition (3)
Turkey	School Type by Percentile of Performance (39)	39	School gender composition (3); Urbanisation (2); Funding (2); Region (12)
Ukraine	Urbanicity (2); Region (25)	49	ISCED Orientation (3); Language (3)
United Arab Emirates	Emirate (7); Funding (2); Curriculum (5); Certainty selections	48	School gender composition (3); Language (3); ISCED level (3); ISCED programme orientation (2)
United Kingdom (excl. Scotland)	Country (3); School type (10); Region (13), Certainty selections	40	School gender composition (3); School performance - England (6) and Wales (5) only; Local authority (7)

United Kingdom (Scotland)	Funding type (2); School attainment (6)	7	School Gender composition (3); Area type (6)
United States	Region (4); Funding (2)	8	Grade span (5); Urbanisation (4); Minority Status (2); School gender composition (3); State (51)
Uruguay	Institutional sector (5); School level (3); Certainty selections	12	Location/Urbanisation (4); School gender composition (4)
Viet Nam	Zone (3); Funding (2); Location (3)	15	Region (6); Province (63); School type (5); Study commitment (2)

The second-stage sampling units in countries/economies using the two-stage design were students within sampled schools. Once schools were selected to be in the sample, a complete list of each sampled school's 15 -year-old students was prepared. Each country/economy participating in the computer-based assessment (CBA) and also in Global Competence (GC) had to set a target cluster size (TCS) of 42 students. Countries/economies participating in the paper-based assessment (PBA) countries/economies and CBA countries/economies without GC, set a TCS of 35 . Variations to the TCS were allowed in consultation with the sampling contractors.

The sample size within schools is prescribed, within limits, in the PISA Technical Standards (see Annex F). From each list of eligible students within a school that contained more than the target cluster size, a sample of around 42 (or 35 for the cases noted above) students were selected with equal probability, and for lists with fewer than the target number, all students on the list were selected.

The target cluster size for countries/economies participating in the international option of financial literacy (FL) was increased. This was due to the fact that a percentage of students being sampled within the schools were assigned to do the FL assessment. This was a change from 2015, where the students selected for the FL assessment were a subsample of the students sampled for the regular PISA test.

In Russia, a three-stage design was used. In this case, geographical areas were sampled first (first-stage units) using probability proportional to size, and then schools (second-stage units) were selected within these sampled geographical areas. Students were the third-stage sampling units in this three-stage design.

POPULATION COVERAGE, AND SCHOOL AND STUDENT PARTICIPATION RATE STANDARDS

To provide valid estimates of student achievement, the sample of students had to be selected using established and professionally recognised principles of scientific sampling in a way that ensured representation of the full target population of 15 -year-old students in the participating countries/economies.

Furthermore, quality standards had to be maintained with respect to (i) coverage of the PISA international target population, (ii) accuracy and precision, and (iii) school and student response rates.

Coverage of the PISA international target population

National Project Managers (NPMs) might have found it unavoidable to reduce their coverage of the target population by excluding, for instance, a small, remote geographical region due to
inaccessibility, or language differences, possibly due to political, organisational or operational reasons, or presence of special education needs students. Areas deemed to be part of a country/economy that included students in the PISA target population, but which were not included for sampling, were designated as non-covered areas. Care was taken in this regard because, when such situations did occur, the national desired target population differed from the international desired target population. In an international survey in education, the types of exclusion must be defined consistently for all participating countries/economies and the exclusion rates have to be limited. Indeed, if a significant proportion of students were excluded, this would mean that survey results would not be representative of the entire national school system. Thus, efforts were made to ensure that exclusions, if they were necessary, were minimised according to the PISA 2018 Technical Standards (see Appendix F).

Exclusion could also take place either at the school level (exclusion of entire schools) or at the within-school level (exclusion of individual students). These exclusions were often for special education needs or language differences.

International within-school exclusion of students were allowed for the following groups:

- Intellectually disabled students: these students who have a documented mental or emotional disability and who, in the professional opinion of qualified staff, are cognitively delayed such that they cannot be validly assessed in the PISA testing setting. This category includes students who are emotionally or mentally unable to follow even the general instructions of the test. Students could not be excluded solely because of poor academic performance or normal discipline problems.
- Functionally disabled students: these are students who are permanently physically disabled in such a way that they cannot be validly assessed in the PISA testing setting. However, functionally disabled students who could provide responses were to be included in the testing.
- Students with insufficient experience in the language of assessment: these are students who need to meet all of the following criteria: i) are not native speakers of the assessment language(s), ii) have limited proficiency in the assessment language(s), and iii) have received less than one year of instruction in the assessment language(s).
- Students not assessable for other reasons as agreed upon. A nationally-defined withinschool exclusion category was permitted if agreed upon by the international contractor. A specific subgroup of students (for example students with severe dyslexia, dysgraphia, or dyscalculia) could be identified for whom exclusion was necessary but for whom the previous three within-school exclusion categories did not explicitly apply, so that a more specific within-school exclusion definition was needed.
- Students taught in a language of instruction for the main domain for which no materials were available. Standard 2.1 notes that the PISA test is administered to a student in a language of instruction provided by the sampled school in the major domain of the test. Thus, if no test materials were available in the language in which the sampled student is taught, the student was excluded. For example, if a country/economy has testing materials in languages X , Y , and Z , but a sampled student is taught in language A , then the student can be excluded since there are no testing materials available in the student's language of instruction.

A school attended only by students who would be excluded from taking the assessment for intellectual, functional, or linguistic reasons was considered a school-level exclusion.

The overall exclusion rate within a country/economy (i.e. school-level and within-school exclusions combined) needed to be kept below 5% of the PISA desired target population.

Guidelines for restrictions on the level of exclusions of various types were as follows:

- School-level exclusions for inaccessibility, feasibility or other reasons were to cover less than 0.5% of the total number of students in the PISA desired target population. Schools in the school sampling frame which had only one or two PISA-eligible students were not allowed to be excluded from the frame. However, if based on the frame, it was clear that the percentage of students in these small schools would not cause a breach of the 0.5% allowable limit, then such schools could all be excluded in the field at the time of the assessment, if they still only had one or two PISA-eligible students.
- School-level exclusions for intellectually or functionally disabled students, or students with insufficient assessment language experience, were to cover fewer than 2% of the PISA desired target population of students.
- Within-school exclusions for intellectually disabled or functionally disabled students, or students with insufficient assessment language experience, or students nationally-defined and agreed upon for exclusion were expected to cover less than 2.5% of PISA student population. Initially, this could only be an estimate. If the actual percentage was ultimately greater than 2.5%, the exclusion percentage was re-calculated without considering students who were excluded because of insufficient familiarity with the assessment language as this is a largely unpredictable part of each country/economy's PISA-eligible population, not under the control of the education system. If the resulting percentage was below 2.5%, the exclusions were regarded as acceptable. Otherwise the level of exclusion was given consideration during the data adjudication process, to determine whether there was any need to notate the results, or take other action in relation to reporting the data.

Accuracy and precision

A minimum of 150 schools were selected in each country/economy, but if a participating country/economy had fewer than 150 schools, then all schools were selected for participation. Within each participating school, a predetermined number of students - the target cluster size, as defined earlier-were randomly selected with equal probability. In schools with fewer than number of target cluster size-eligible students, all students were selected. In total, a minimum sample size of 6300 assessed students was needed in computer-based countries/economies doing GC, or 5250 assessed students in paper-based countries/economies and computer-based countries/economies without GC). In cases where the entire population had fewer students, all students were selected. It was possible to negotiate a target cluster size that differed from 42 students (or 35 as noted above). When this was the case, the sample size of schools was increased to more than 150 , so as to ensure that at least the minimum sample size of assessed students would be reached. The target cluster size selected per school had to be at least 25 students, so as to ensure adequate accuracy in estimating variance components within and between schools - a major analytical objective of PISA.

Countries/economies doing the FL option needed an additional 1650 assessed students for FL. This was achieved by increasing the TCS by approximately 21%. For example, a CBA country/economy doing GC that would otherwise have had a TCS equal to 42 increased its TCS to 53 to accommodate the FL sample.

NPMs were strongly encouraged to identify available variables to use for defining the explicit and implicit strata for schools to reduce the sampling variance. See the section "Stratification", further on in this chapter for more details.

For countries/economies participating in PISA 2015 that had larger than anticipated sampling variances associated with their estimates, recommendations were made regarding sample design changes that would possibly help to reduce the sampling variances for PISA 2018. These included modifications to stratification variables and increases in the required school sample size.

School response rates

A response rate of 85% was required for initially-selected schools. If the initial school response rate fell between 65% and 85%, an acceptable school response rate could still be reached through the use of replacement schools. Figure 4.1 provides a summary of the international requirements for school response rates. To compensate for a sampled school that did not participate, where possible, two potential replacement schools were identified. The school replacement process is described in the section further on in this chapter "School sample selection".

Furthermore, a school with a student participation rate between 25% and 50% was not considered as a participating school for the purposes of calculating and documenting response rates. Students were deemed participants if they responded to at least half of the cognitive items or if they had responded to at least one cognitive item and had completed the background questionnaire (see Annex F). However, data from such schools were included in the database and contributed to the estimates included in the initial PISA international report. Data from schools with a student participation rate of less than 25% were not included in the database, and such schools were regarded as non-respondents.

The rationale for this approach was as follows. There was concern that, in an effort to meet the requirements for school response rates, a National Centre might allow schools to participate that would not make a concerted effort to ensure that students attended the assessment sessions. To avoid this, a standard for student participation was required for each individual school in order that the school be regarded as a participant. This standard was set at a minimum of 50% student participation. However, there were a few schools in many countries/economies that conducted the assessment without meeting that standard. Thus it had to be decided if the data from students in such schools should be used in the analyses, given that the students had already been assessed. If the students from such schools were retained, non-response bias would possibly be introduced to the extent that the students who were absent could have achieved different results from those who attended the testing session, and such a bias is magnified by the relative sizes of these two groups. If one chose to delete all assessment data from such schools, then non-response bias would be introduced as the schools were different from others in the sample, and sampling variance would be increased because of sample size attrition.

It was decided that, for a school with between 25% and 50% student response, treating the school as a nonrespondents was likely to introduce more bias and variance than was treating the students as nonrespondents. However, we made the converse judgement for those schools with a student response rate below 25%. Clearly the cut-off of 25% is arbitrary as one would need extensive studies to try to establish an optimal cut-off empirically. However as the student response rate decreases within a school, the possibility of bias from using the assessed students
in that school will increase, while the loss in sample size from dropping all of the students in the school will be small.

Figure 4.1: School response rate standards

These PISA standards applied to weighted school response rates. The procedures for calculating weighted response rates are presented in Chapter 8. Weighted response rates weight each school by the number of students in the population that are represented by the students sampled from within that school. The weight consists primarily of the enrolment size of 15-year-old students in the school, divided by the selection probability of the school. Because the school samples were selected with probability proportional to size, in most countries/economies most schools contributed approximately equal weights. As a consequence, the weighted and unweighted school response rates were similar. Exceptions could occur in countries/economies that had explicit strata that were sampled at very different rates. Details as to how each participating economy and adjudicated region performed relative to these school response rate standards are included in Chapters 11 and 14.

Student response rates

An overall response rate of 80% of selected students in participating schools was required. A student who had participated in the original or follow-up cognitive sessions was considered a participant. A minimum student response rate of 50% within each school was required for a school to be regarded as participating: the overall student response rate was computed using only students from schools with at least a 50% student response rate. Again, weighted student response rates were used for assessing this standard. Each student was weighted by the reciprocal of his/her sample selection probability.

MAIN STUDY SCHOOL SAMPLE

Definition of the national target population

NPMs were first required to confirm their dates of testing and age definition with the international contractor. Once these were approved, NPMs were notified to avoid having any possible drift in the assessment period that could lead to an unapproved definition of the national target population.

Every NPM was required to define and describe their country/economy's target population and explain how and why it might deviate from the international target population. Any hardships in accomplishing complete coverage were specified, discussed and approved or not, in advance. Where the national target population deviated from full coverage of all PISA-eligible students, the deviations were described and enrolment data provided to measure how much coverage was reduced. The population, after all exclusions, corresponded to the population of students recorded on each country/economy's school sampling frame. Exclusions were often proposed for practical reasons such as unreasonable increased survey costs or complexity in the sample design and/or difficult testing conditions. These difficulties were generally addressed by modifying the sample design to reduce the number of such schools selected rather than to exclude them. Schools with students that would all be excluded through the within-school exclusion categories could be excluded up to a maximum of 2% of the target population as previously noted. Otherwise, countries/economies were instructed to include the schools but to administer the PISA UH form, consisting of a subset of the PISA assessment items, deemed more suitable for students with special needs. Fourteen countries/economies used the UH booklet for PISA 2018.

Within participating schools, all PISA-eligible students were to be listed. From this, either a sample of target cluster size students was randomly selected, or all students were selected if there were fewer than the number of target cluster size-eligible students (as described in the "Student Sampling" section). The lists had to include students deemed as meeting any of the categories for exclusion, and a variable maintained to briefly describe the reason for exclusion. This made it possible to estimate the size of the within-school exclusions from the sample data.

It was understood that the exact extent of within-school exclusions would not be known until the within-school sampling data were returned from participating schools and sampling weights computed. Participating country/economy projections for within-school exclusions provided before school sampling were known to be estimates.

NPMs were made aware of the distinction between within-school exclusions and non-response. Students who could not take the PISA achievement tests because of a permanent condition were to be excluded and those with a temporary impairment at the time of testing, such as a broken arm, were treated as non-respondents along with other absent sampled students.

Exclusions by country/economy are documented in Chapter 11.

The sampling frame

All NPMs were required to construct a school sampling frame to correspond to their national defined target population. The school sampling frame as defined by the School Sampling Preparation Manual set of documents would provide complete coverage of the national
defined target population without being contaminated by incorrect or duplicate entries or entries referring to elements that were not part of the defined target population. It was expected that the school sampling frame would include any school that could have 15 -year-old students in grade 7 or higher, even those schools which might later be excluded or deemed ineligible because they had no PISA-eligible students at the time of data collection. The quality of the sampling frame directly affects the survey results through the schools' probabilities of selection and therefore their weights and the final survey estimates. NPMs were therefore advised to be diligent and thorough in constructing their school sampling frames.

All but one country/economy used school-level sampling frames as their first stage of sample selection. The School Sampling Preparation Manual set of documents indicated that the quality of sampling frames for both two and three-stage designs would largely depend on the accuracy of the approximate enrolment of 15 -year-olds available (ENR) for each first-stage sampling unit. A suitable ENR value was a critical component of the sampling frames since selection probabilities were based on it for both two- and three-stage designs. The best ENR for PISA was the number of currently enrolled 15 -year-old students. Current enrolment data, however, were rarely available at the time of school sampling, which meant using alternatives. Most countries/economies used the first-listed available option from the following list of alternatives:

- student enrolment in the target age category (15-year-olds) from the most recent year of data available
- if 15 -year-olds tend to be enrolled in two or more grades, and the proportions of students who are aged 15 in each grade are approximately known, the 15-year-old enrolment can be estimated by applying these proportions to the corresponding grade-level enrolments
- the grade enrolment of the modal grade for 15 -year-olds
- total student enrolment, divided by the number of grades in the school.

The School Sampling Preparation Manual set of documents noted that if reasonable estimates of ENR did not exist or if the available enrolment data were out of date, schools might have to be selected with equal probabilities which might require an increased school sample size. However, no countries/economies needed to use this option.

Besides $E N R$ values, NPMs were instructed that each school entry on the frame should include at minimum:

- school identification information, such as a unique numerical national identification, and contact information such as name, address and phone number (the latter type of information was not needed by contractors-only by NPMs, thus there was no requirement for contractors to have this type of information on the school frame submitted by NPMs.)
- coded information about the school, such as region of country/economy, school type and extent of urbanisation, which would be used as stratification variables.

As noted, a three-stage design and an area-level (geographic) sampling frame could be used where a comprehensive national list of schools was not available and could not be constructed without undue burden, or where the procedures for administering the test required that the schools be selected in geographic clusters. As a consequence, the area-level sampling frame introduced an additional stage of frame creation and sampling (first stage) before actually sampling schools (second stage, with the third stage being students). Although generalities about three-stage sampling and using an area-level sampling frame were outlined in the School Sampling

Preparation Manual set of documents (for example, that there should be at least 80 first-stage units and at least 40 needed to be sampled), NPMs were also informed that the more detailed procedures outlined there for the general two-stage design could easily be adapted to the threestage design. The only country that used a three-stage design was Russia, where a national list of schools was not available. The use of the three-stage design allowed for school lists to be obtained only for those areas selected in stage one rather than for the entire country/economy. The NPM for Russia received additional support with their area-level sampling frame.

Stratification

Prior to sampling, schools were to be ordered, or stratified, in the sampling frame. Stratification consists of classifying schools into similar groups according to selected variables referred to as stratification variables. Stratification in PISA was used to:

- improve the efficiency of the sample design, thereby making the survey estimates more reliable
- apply different sample designs, such as disproportionate sample allocations, to specific groups of schools in different strata
- ensure all parts of a population were included in the sample
- ensure adequate representation of specific groups of the target population in the sample.

There were two types of stratification used: explicit and implicit. Explicit stratification consists of grouping schools into strata that will be treated independently, as if they were separate school sampling frames. Examples of explicit stratification variables could be states or regions within a country/economy. Implicit stratification consists essentially of sorting the schools within each explicit stratum using a set of designated implicit stratification variables. Examples of implicit stratification variables could be type of school, urbanisation, school size, or minority composition. Implicit stratification is a way of ensuring a strictly-proportional sample allocation of schools across all the groups used for implicit stratification. It can also lead to improved reliability of survey estimates, provided that the implicit stratification variables being considered are correlated with PISA achievement at the school level (Jaeger, 1984). Guidelines on choosing stratification variables that would possibly improve the sampling were provided in the Sampling in PISA manual (OECD, 2016).

Table 4.1 provides the explicit stratification variables used by each country/economy, as well as the number of explicit strata found within each country/economy. For example, Australia had eight explicit strata using states/territories which were then further delineated by three school types (known as sectors), and then a separate stratum was formed for vocational training schools (TAFE). Australia also had one explicit stratum for certainty selections, so that there were 26 explicit strata in total. Variables used for implicit stratification and the respective number of levels can also be found in Table 4.1.

As the sampling frame was always finally sorted by school size, school size was also an implicit stratification variable, though it is not listed in Table 4.1. The use of school size as an implicit stratification variable provides a degree of control over the student sample size so as to possibly avoid the sampling of too many relatively large schools or too many relatively small schools.

Assigning a measure of size to each school

For the probability proportional to size sampling method used for PISA, a Measure of Size (MOS) derived from ENR was established for each school on the sampling frame. MOS was generally constructed as: $M O S=\max (E N R, T C S)$. This differed slightly in the case of small schools treatment, discussed later.

Thus, the measure of size was equal to the enrolment estimate ($E N R$), unless enrolment was less than the $T C S$, in which case the measure of size was set equal to the target cluster size. In most countries/economies, the MOS was equal to $E N R$ or the TCS, whichever was larger.

As schools were sampled with probability proportional to size, setting the measure of size of small schools to 42 students (or 35 for paper-based countries/economies and CBA countries/economies without GC) was equivalent to drawing a simple random sample of small schools. That is, small schools would have an equally likely chance of being selected to participate. However, please see the "Treatment of small schools" for details on how small schools were sampled.

School sample selection

School sample allocation over explicit strata

The total number of schools to be sampled in each country/economy needed to be allocated among the explicit strata so that the expected proportion of students in the sample from each explicit stratum was approximately the same as the population proportions of PISA-eligible students in each corresponding explicit stratum. There were two exceptions. If very small schools required under-sampling, students in them had smaller percentages in the sample than in the population. To compensate for the resulting loss of sample, the large schools had slightly higher percentages in the sample than the corresponding population percentages. The other exception occurred if only one school was allocated to any explicit stratum. In this case, two schools were allocated for selection in the stratum to aid with variance estimation. Similarly, if only three schools existed in any explicit stratum, instead of taking only two, all three were selected, to increase the efficiency of the sample design.

Sorting the sampling frame

The School Sampling Preparation Manual set of documents indicated that, prior to selecting the school sample, schools in each explicit stratum were to be sorted by a limited number of variables chosen for implicit stratification and finally by the ENR value within each implicit stratum. The schools were first to be sorted by the first implicit stratification variable, then by the second implicit stratification variable within the levels of the first implicit stratification variable, and so on, until all implicit stratification variables were used. This gave a crossclassification structure of cells, where each cell represented one implicit stratum on the school sampling frame. The sort order was alternated between implicit strata, from high to low and then low to high, etc., through all implicit strata within an explicit stratum.

Determining which schools to sample

The PPS-systematic sampling method used in PISA first required the computation of a sampling interval for each explicit stratum. This calculation involved the following steps:

- recording the total measure of size, S , for all schools in the sampling frame for each specified explicit stratum
- recording the number of schools, D, to be sampled from the specified explicit stratum, which was the number allocated to the explicit stratum
- calculating the sampling interval, I, as follows: I = S/D
- including in the sample all schools for which the school's size measure exceed I (known as certainty schools)
- removing certainty schools from the frame, recalculating S, D, and I
- recording the sampling interval, I, to four decimal places.

Next, a random number had to be generated for each explicit stratum. The generated random number ($R N$) was from a uniform distribution between zero and one and was to be recorded to four decimal places.

The next step in the PPS selection method in each explicit stratum was to calculate selection numbers - one for each of the D schools to be selected in the explicit stratum. Selection numbers were obtained using the following method:

- Obtaining the first selection number by multiplying the sampling interval, I, by the random number, $R N$. This $R N$ number is a random number between zero and one, and to 4 decimal places. This first selection number was used to identify the first sampled school in the specified explicit stratum.
- Obtaining the second selection number by adding the sampling interval, I, to the first selection number. The second selection number was used to identify the second sampled school.
- Continuing to add the sampling interval, I, to the previous selection number to obtain the next selection number. This was done until all specified line numbers (1 through D) had been assigned a selection number.

Thus, the first selection number in an explicit stratum was $R N \times I$, the second selection number was $(R N \times I)+I$, the third selection number was $(R N \times I)+I+I$, and so on.

Selection numbers were generated independently for each explicit stratum, with a new random number generated for each explicit stratum.

Identifying the sampled schools

The next task was to compile a cumulative measure of size in each explicit stratum of the school sampling frame that assisted in determining which schools were to be sampled. Sampled schools were identified as follows:

Let Z denote the first selection number for a particular explicit stratum. It was necessary to find the first school in the sampling frame where the cumulative MOS equalled or exceeded Z. This was the first sampled school. In other words, if C_{s} was the cumulative $M O S$ of a particular school S in the sampling frame and $C_{(s-1)}$ was the cumulative MOS of the school immediately preceding
it, then the school in question was selected if C_{s} was greater than or equal to Z, and $C_{(s-l)}$ was strictly less than Z. Applying this rule to all selection numbers for a given explicit stratum generated the original sample of schools for that stratum.

Box 4.1 Illustration of probability proportional to size (PPS) sampling

To illustrate these steps, suppose that in an explicit stratum in a participant country/economy, the PISA-eligible student population is 105000 , then:

- the total measure of size, S, for all schools is 105000
- the number of schools, D, to be sampled is 150
- calculating the sampling interval, $I, 105000 / 150=700$
- generate a random number, $R N, 0.3230$
- the first selection number is $700 \times 0.3230=226$ and it was used to identify the first sampled school in the specified explicit stratum
- the second selection number is $226+700=926$ and it was used to identify the second sampled school
- the third selection number is $926+700=1626$ and it was used to identify the third sampled school, and so on until the end of the school list is reached.

This will result in a school sample size of 150 schools.
The table below also provides these example data. The school that contains the generated selection number within its cumulative enrolment is selected for participation.

School	MOS	Cumulative MOS $\left(\boldsymbol{C}_{\boldsymbol{s}}\right)$	Selection number	School selection
001	550	550	226	Selected
002	364	914		
003	60	974	926	Selected
004	93	1067		
005	88	1155		
006	200	1355		Selected
007	750	2105	1626	
008	72	2177		Selected
009	107	2284		
010	342	2626	2326	\ldots
011	144	2770		
\ldots	\ldots	\ldots		

-

Identifying replacement schools

Each sampled school in the main survey was assigned two replacement schools from the school sampling frame, if possible, identified as follows: for each sampled school, the schools
immediately preceding and following it in the explicit stratum, which was ordered within by the implicit stratification, were designated as its replacement schools. The school immediately following the sampled school was designated as the first replacement and labelled R_{l}, while the school immediately preceding the sampled school was designated as the second replacement and labelled R_{2}. The School Sampling Preparation Manual set of documents noted that in small countries/economies, there could be problems when trying to identify two replacement schools for each sampled school. In such cases, a replacement school was allowed to be the potential replacement for two sampled schools (a first replacement for the preceding school, and a second replacement for the following school), but an actual replacement for only one school. Additionally, it may have been difficult to assign replacement schools for some very large sampled schools because the sampled schools appeared close to each other in the sampling frame. There were times when it was only possible to assign a single replacement school, or even none, when two consecutive schools in the sampling frame were sampled. That is, no unsampled schools existed between sampled schools.

Variations were allowed if a sampled school happened to be the last school listed in an explicit stratum. In this case the two schools immediately preceding it were designated as replacement schools. Similarly, for the first school listed in an explicit stratum, the two schools immediately following it were designated as replacement schools.

Assigning school identifiers

To keep track of sampled and replacement schools in the PISA database, each was assigned a unique, three-digit school code sequentially numbered starting with one within each explicit stratum (each explicit strata was numbered with a separate two-digit stratum code). For example, if 150 schools are sampled from a single explicit stratum, they are assigned identifiers from 001 to 150 . First replacement schools in the main survey are assigned the school identifier of their corresponding sampled schools, incremented by 300. For example, the first replacement school for sampled school 023 is assigned school identifier 323. Second replacement schools in the main survey are assigned the school identifier of their corresponding sampled schools, but incremented by 600 . For example, the second replacement school for sampled school 136 took the school identifier 736.

Tracking sampled schools

NPMs were encouraged to make every effort to confirm the participation of as many sampled schools as possible to minimise the potential for non-response biases. Each sampled school that did not participate was replaced if possible. NPMs contacted replacement schools only after all contacts with sampled schools were made (the first replacement was contacted first, followed by the second replacement if needed). If the unusual circumstance arose whereby both an original school and a replacement participated, only the data from the original school were included in the weighted data, provided that at least 50% of the PISA-eligible, non-excluded students had participated. If this was not the case, it was permissible for the original school to be labelled as a nonrespondent and the replacement school as the respondent, provided that the replacement school had at least 50% of the PISA-eligible, non-excluded students as participants.

Special school sampling situations

Treatment of small schools

In PISA, schools were classified as very small, moderately small or large. A school was classified as large if it had an $E N R$ equal to or above the TCS (42 students in most countries/economies). A moderately small school had an $E N R$ in the range of one-half the TCS to TCS (21 to 41 students in most countries/economies). A very small school had an ENR less than one-half the TCS (20 students or fewer in most countries/economies). Schools with especially few students were further classified as either very small schools with an $E N R$ of zero, one, or two students or very small schools with an ENR greater than two students but less than one-half the TCS. Unless they received special treatment in the sampling, the occurrence of small schools in the sample will reduce the sample size of students for the national sample to below the desired target because the within-school sample size would fall short of expectations. A sample with many small schools could also be an administrative burden with many testing sessions yielding few students. To minimise these problems, procedures were devised for managing small schools in the sampling frame.

To balance the two objectives of selecting an adequate sample of small schools but not too many small schools so as to hurt student yield, a procedure was recommended that assumed the underlying idea of undersampling the very small schools by a factor of two (those with an $E N R$ greater than two but less than one-half the $T C S$) and undersampling the very small schools with zero, one, or two students by a factor of four, and proportionally increasing the number of large schools to sample. To determine whether very small schools should be undersampled and if the sample size needed to be increased to compensate for small schools, the following test was applied.

- If the percentage of students in very small schools $(E N R<T C S / 2)$ was 1 percent or MORE, then very small schools were undersampled and the school sample size increased, sufficient to maintain the required overall yield.
- If the percentage of students in very small schools (ENR<TCS/2) was LESS than 1 percent, and the percentage of schools that are the very smallest schools (ENR of 0,1 , or 2) was 20 percent or MORE of total schools on the frame, and the percentage of students in moderately small schools (TCS/2<ENR<TCS) was 4 percent or MORE, then very small schools were undersampled and the school sample size increased.
- If the percentage of students in very small schools (ENR<TCS/2) was LESS than 1 percent, and the percentage of schools that are the very smallest schools (ENR of 0,1 , or 2) was LESS than 20 percent of total schools on the frame, and the percentage of students in moderately small schools (TCS/2<ENR<TCS) was 4 percent or MORE, then there was no undersampling of very small schools needed but the school sample size was increased.
- If the percentage of students in very small schools (ENR<TCS/2) was LESS than 1 percent, and the percentage of schools that are the very smallest schools (ENR of 0,1 , or 2) was 20 percent or MORE of total schools on the frame, and the percentage of students in moderately small schools (TCS/2<ENR<TCS) was LESS than 4 percent, then very small schools were undersampled and the school sample size may have needed to be increased, with the extent to be determined.

If none of these conditions were true, then the small schools contained such a small proportion of the PISA population that they were unlikely to reduce the sample below the desired target.

In this case, no undersampling of very small schools was needed nor an increase to the school sample size to compensate for small schools.

The condition included in the second, third, and fourth dot points above, where the percentage of schools on the frame that are the very smallest (ENR of zero, one, or two) is 20 percent or more, was added in the PISA 2015 cycle and was also applied in 2018. This modification from earlier cycles was for the infrequent situation where very small schools ($E N R<T C S / 2$) overall contain less than 1 percent of total frame enrolment while at the same time these very smallest schools account for a large percentage of total schools on the frame. If this condition was met and no undersampling was otherwise required based on the percentage of enrolment in very small schools, very small schools were undersampled to avoid having too many of these in the school sample. Even though undersampling can reduce the number of these in the sample from what could be expected without undersampling, when very small schools account for such a large percentage of schools on the frame it is likely that a relatively large number of them (but not a large proportion) will be selected. A minor increase to the sample size was needed in this case to safeguard the needed student sample size.

If the number of very small schools was to be controlled in the sample without creating explicit strata for these small schools, this was accomplished by assigning a measure of size (MOS) of $T C S / 2$ to those very small schools with an $E N R$ greater than two but less than $T C S / 2$ and a measure of size equal to the $T C S / 4$ for the very small schools with an $E N R$ of zero, one, or two. In effect, very small schools with a measure of size equal to $T C S / 2$ were under-sampled by a factor of two (school probability of selection reduced by half), and the very small schools with a measure of size equal to TCS/4 were under-sampled by a factor of four (school probability of selection reduced by three-fourths). This was accomplished as follows and was a standard procedure followed in all countries/economies.

The formulae below assume an initial target school sample size of 150 and a target student sample size of 6300 .

- Step 1: From the complete sampling frame, find the proportions of total ENR that come from very small schools with $E N R$ of zero, one or two (Pl), very small schools with ENR greater than two but fewer than $T C S / 2(P 2)$, moderately small schools (Q) and large schools (R). Thus, $P 1+P 2+Q+R=1$.
- Step 2: Calculate the value L, where $L=1.0+3(P 1) / 4+(P 2) / 2$. Thus L is a positive number slightly more than 1.0.
- Step 3: The minimum sample size for large schools is equal to $150 \times R \times L$, rounded up to the nearest integer. It may need to be enlarged because of national considerations, such as the need to achieve minimum sample sizes for geographic regions or certain school types.
- Step 4: Calculate the mean value of $E N R$ for moderately small schools (MENR), and for very small schools (VIENR and V2ENR). MENR is a number in the range of TCS/2 to TCS, $V 2 E N R$ is a number larger than two but no greater than TCS/2, and VIENR is a number in the range of zero to two.
- Step 5: The number of schools that must be sampled from the moderately small schools is given by: $(6300 \times Q \times L) /(M E N R)$.
- Step 6: The number of schools that must be sampled from the very small schools (type P2) is given by: $(3150 \times P 2 \times L) /(V 2 E N R)$.
- Step 7: The number of schools that must be sampled from the very small schools (type P1) is given by: $(1575 \times P 1 \times L) /(V 1 E N R)$.

To illustrate the steps, suppose that in a participant country/economy, the TCS is equal to 42 students, with 10% of the total enrolment of 15 -year-olds in moderately small schools, and 5% in each type of very small schools, $P 1$ and $P 2$. Suppose that the average enrolment in moderately small schools is 25 students, in very small schools (type $P 2$) it is 12 students, and in very small schools (type P1) it is 1.5 students.

- Step 1: The proportions of total $E N R$ from very small schools is $P 1=0.05$ and $P 2=0.05$, from moderately small schools is $Q=0.1$, and from large schools is $R=0.8$. The proportion of the very smallest schools on the frame was not more than 20%. It can be shown that 0.05 $+0.05+0.1+0.8=1.0$.
- Step 2: Calculate the value $L . L=1.0+3(0.05) / 4+(0.05 / 2)$. Thus $L=1.0625$.
- Step 3: The minimum sample size for large schools is equal to $150 \times 0.8 \times 1.0625=127.5$. That is, at least 128 (rounded up to the nearest integer) of the large schools must be sampled.
- Step 4: The mean value of $E N R$ for moderately small schools (MENR) is given in this example as 25 , very small schools of type $P 2(V 2 E N R)$ as 12 , and very small schools of type $P 1$ (VlENR) as 1.5 .
- Step 5: The number of schools that must be sampled from the moderately small schools is given by:
$(6300 \times 0.1 \times 1.0625) / 25=26.8$. At least 27 (rounded up to the nearest integer) moderately small schools must be sampled.
- Step 6: The number of schools that must be sampled from the very small schools (type P2) is given by:
$(3150 \times 0.05 \times 1.0625) / 12=13.9$. At least 14 (rounded up to the nearest integer) very small schools of type $P 2$ must be sampled.
- Step 7: The number of schools that must be sampled from the very small schools (type P1) is given by:
$(1575 \times 0.05 \times 1.0625) / 1.5=55.8$. At least 56 (rounded up to the nearest integer) very small schools of type P1 must be sampled.

Combining these different sized school samples gives a total sample size of $128+27+14+$ $56=225$ schools. Before considering school and student non-response, the larger schools will yield an initial sample of approximately $128 \times 42=5376$ students. The moderately small schools will give an initial sample of approximately $27 \times 25=675$ students, very small schools of type $P 2$ will give an initial sample size of approximately $14 \times 12=168$ students, and very small schools of type $P l$ will give an initial sample size of approximately $56 \times 1.5=84$ students. The total expected sample size of students is therefore $5376+675+168+84=6$ 303.

This procedure, called small school analysis, was done not just for the entire school sampling frame, but for each individual explicit stratum. An initial allocation of schools to explicit strata provided the starting number of schools and students to project for sampling in each explicit stratum. The small school analysis for a single unique explicit stratum indicated how many very small schools of each type (assuming under-sampling, if needed), moderately small schools and large schools would be sampled in that stratum. Together, these provided the final sample size, n, of schools to select in the stratum. Based on the stratum sampling interval and random start, large, moderately small, and very small schools were sampled in the stratum, to a total of n sampled schools. Because of the random start, it was possible to have more or less than expected of the very small schools of either type, P1 or P2, of the moderately small schools, and of the large schools. The total number of sampled schools however was fixed at
n, and the number of expected students to be sampled was always approximate to what had been projected from the unique stratum small school analysis.

PISA and national study overlap control

The main studies for PISA 2018 and a national (non-PISA) survey could occur at approximately the same time in some participating countries/economies. Because of the potential for increased burden, an overlap control procedure was used for eight countries/economies (Argentina (TALIS only for CABA), Canada (TALIS and ICILS, both only for Alberta), Colombia (TALIS), Denmark (TALIS and ICILS), Netherlands (TALIS), Norway (TALIS), Sweden (TALIS), and also the United States (TALIS)), who requested that there be a minimum incidence of the same schools being sampled for both PISA and their national (non-PISA) study. This overlap control procedure for each country/economy required that the same school identifiers be used on the PISA and the national study school frames for the schools in common across the other assessments.

The national study samples were usually selected before the PISA samples. Thus, for countries/economies requesting overlap control, the national study centre supplied the international contractor with their school frames, national school IDs, each school's probability of selection, and an indicator showing which schools had been sampled for the national study.

Sample selections for PISA and the national study could totally avoid overlap of schools if schools which would have been selected with high probability for either study had their selection probabilities capped at 0.5 . Such an action would make each study's sample slightly less than optimal, but this might be deemed acceptable when weighed against the possibility of low response rates due to the burden of participating in two assessments. Only Norway and Sweden requested this for PISA 2018. Therefore, if any schools had probabilities of selection greater than 0.5 on either study frame for the other countries/economies where overlap control was implemented, these schools had the possibility to be selected to be in both studies.

To control overlap of schools between PISA and another sample, the sample selection of schools for PISA adopted a modification of an approach described by Keyfitz (1951) based on Bayes Theorem. To use PISA and TALIS in an example of the overlap control approach to minimise overlap, suppose that $P R O B P$ is the PISA probability of selection and $P R O B I$ is the TALIS probability of selection. Then a conditional probability of a school's selection into PISA (CPROB) is determined as follows:

$$
C P R O B=\left\{\begin{array}{c}
\max \left[0,\left(\frac{P R O B I+P R O B P-1}{P R O B I}\right)\right] \text { if the school was a TALIS school } \\
\min \left[1, \frac{P R O B P}{(1-P R O B I)}\right] \text { if the school was not a TALIS school } \\
P R O B P \text { if the school was not a TALIS eligible school }
\end{array}\right.
$$

Then a conditional CMOS variable was created to coincide with these conditional probabilities as follows:

$$
C M O S=C P R O B \times \text { stratum sampling interval }
$$

The PISA school sample was then selected using the line numbers created as usual (see earlier section), but applied to the cumulated CMOS values (as opposed to the cumulated MOS values).

Note that it was possible that the resulting PISA sample size could be slightly lower or higher than the originally assigned PISA sample size, but this was deemed acceptable.

Monitoring school sampling

PISA 2018 Technical Standard 1.13 states that, as in the previous cycles, the international contractor should select the school samples unless otherwise agreed upon (see Appendix F). Japan was the only participant that selected their own school sample, doing so for reasons of confidentiality.

Sample selection for Japan was replicated by the international contractor using the same random numbers as used by the Japanese national centre, to ensure quality in this case. All other participating countries/economies' school samples were selected by, and checked in detail by, the international contractor. To enable this, all countries/economies were required to submit sampling information on forms associated with the following various sampling tasks:

- time of testing and age definition for both the field trial and main study were captured on Sampling Task 1 (see below) at the time of the field trial, with updates being possible before the main study
- information about stratification for the field trial and for the main study was recorded on Sampling Task 2
- forms or data associated with Sampling Tasks 3, 4, 5 and 6 were all for the field trial
- the national desired target population information for the main study was captured on the form associated with Sampling Task 7a
- information about the defined national target population was recorded on the form associated with Sampling Task 7b;
- the description of the sampling frame was noted on the form associated with Sampling Task 8a
- the school sampling frame was created in one spreadsheet and the list of any excluded schools in a second spreadsheet associated with Sampling Task 8b.

The international contractor completed school sampling and, along with the school sample, returned other information (small school analyses, school allocation, and a spreadsheet that countries/economies could use for tracking school participation). Table 4.2 provides a summary of the information required for each sampling task and the timetables (which depended on national assessment periods).

Table 4.2 Schedule of school sampling activities

Activity	Submit to Consortium	Due Date
Update time of testing and age definition of population to be tested	Sampling Task 1 - time of testing and age definition	Update what was submitted at the time of the FT, two months before the school sample is to be selected
Finalise explicit and implicit stratification variables	Sampling Task 2-stratification and other information	Update what was submitted at the time of the FT, two months before the school sample is to be selected

Activity	Submit to Consortium	Due Date
Define national desired target population	Sampling Task 7a - national desired target population	Submit two months before the school sample is to be selected
Define national defined target population	Sampling Task 7b - national defined target population	Submit two months before the school sample is to be selected
Create and describe sampling frame	Sampling Task 8a - sampling frame description	Submit two months before the school sample is to be selected
Submit sampling frame	Sampling Task 8b - sampling frame (in one Excel® sheet), and excluded schools (in another Excel® sheet)	Submit two months before the school sample is to be selected
Decide how to treat small schools	Treatment of small schools	The international contractor will complete and return this information to the NPM about one month before the school sample is to be selected
Finalise sample size requirements	Sampling Task 9 - sample allocation by explicit strata	The international contractor will complete and return this information to the NPM about one month before the school sample is to be selected
Describe population within strata	Population counts by strata	The international contractor will complete and return this information to the NPM when the school sample is sent to the NPM
Review and agree to the sampling form required as input to KeyQuest	Sampling Task 11 - reviewing and agreeing to the Sampling Form for KeyQuest (SFKQ)	Countries/economies had one month after their sample was selected to agree to their SFKQ
Submit sampling data	Sampling Task 12 - school participation information and data validity checks	Submit within one month of the end of the data collection period
Select the school sample	Sampling Task 10 - school sample selection	The international contractor will return the sampling frame to the NPM with sampled schools and their replacement schools identified and with PISA IDs assigned when the school sample is
selected		

Once received from each participating country/economy, each set of information was reviewed and feedback was provided to the country/economy. Forms were only approved after all criteria were met. Approval of deviations was only given after discussion and agreement by the
international contractors. In cases where approval could not be granted, countries/economies were asked to make revisions to their sample design and sampling forms and resubmit.

Checks that were performed when monitoring each sampling task follow. Although all sampling tasks were checked in their entirety, the below paragraphs contain matters that were explicitly examined.

Just after countries/economies submitted their main survey sampling tasks, the international contractor verified all special situations known in each participating country/economy. Such special situations included whether or not: the TCS value differed from 42 or 35 students; the Financial Literacy Assessment was being conducted; the Teacher Questionnaire was being conducted; Global Competence was being conducted; overlap control procedures with a national (non-PISA) survey were required; there was any regional or other type of oversampling; the UH booklet would be used; and any grade or other type of student sampling would be used.

Additionally, any countries/economies with fewer than 5400 or just over 5400 assessed students in PISA 2015 had increased school sample sizes discussed and agreed upon (4 500 for paperbased assessments). Additionally, countries/economies which had too many PISA 2015 exclusions were warned about not being able to exclude any schools in the field for PISA 2018. Finally, any countries/economies with effective student sample sizes less than 400 in PISA 2015 also had increased school sample sizes discussed and agreed upon.

Sampling Tasks

The sampling procedure was carried out according to the completion of a series of tasks. During each of these tasks, several checks were performed with the data to ensure the quality of the resulting sample. These sampling tasks are the following:

Sampling task 0: Languages of instruction

- Language distributions were compared with those of PISA 2015 for countries/economies which had participated in PISA 2015. Differences in languages and/or the percentage distribution were queried.
- The existence of international/foreign schools was asked about.
- Checks were done on the appropriate inclusion of languages in the FT along with proper verification plans.
- Languages which were planned for MS exclusion were scrutinised.

Sampling task 1: Time of testing and age definition

- Assessment dates had to be appropriate for the selected target population dates.
- Assessment dates could not cover more than a 56-day period unless agreed upon.
- Assessment dates could not be within the first six weeks of the academic year.
- If assessment end dates were close to the end of the target population birth date period, NPMs were alerted not to conduct any make-up sessions beyond the date when the population births dates were valid.

Sampling task 2: Stratification (and other information)

- Each participating country/economy used explicit strata to group similar schools together to reduce sampling variance and to ensure representativeness of students in various school types using variables that might be related to outcomes. The international contractor assessed each country/economy's choice of explicit stratification variables. If a country/economy was known to have school tracking or distinct school programmes and these were not among the explicit stratification variables, a suggestion was made to include this type of variable.
- Dropping variables or reducing levels of stratification variables used in the past was discouraged and only accepted if the National Centre could provide strong reasons for doing so.
- Adding variables for explicit stratification was encouraged if the new variables were particularly related to outcomes. Care was taken not to have too many explicit strata though.
- Levels of variables and their codes were checked for completeness.
- If no implicit stratification variables were noted, suggestions were made about ones that might be used. In particular, if a country/economy had single gender schools and school gender was not among the implicit stratification variables, a suggestion was made to include this type of variable to ensure no sample gender imbalances. Similarly, if there were ISCED school level splits, the ISCED school level was also suggested as an explicit or implicit stratification variable.
- Without overlap control there is nearly as good control over sample characteristics compared to population characteristics whether explicit or implicit strata are used. With overlap control some control is lost when using implicit strata, but not when using explicit strata. For countries/economies which wanted overlap control with a national non-PISA survey, as many as possible of their implicit stratification variables were made explicit stratification variables.
- If grade or other national option sampling, or special oversampling of subpopulations of PISA students were chosen options, checks were done to ensure there was only one student sampling option per explicit stratum.

Sampling task 7a: National desired target population

- The total national number of 15 -year-olds of participating countries/economies was compared with those from previous cycles. Differences, and any kind of trend, were queried.
- Large deviations between the total national number of 15 -year-olds and the enrolled number of 15 -year-olds were questioned.
- Large increases or decreases in enrolled population numbers compared to those from previous PISA cycles were queried, as were increasing or decreasing trends in population numbers since PISA 2000.
- Any population to be omitted from the international desired population was noted and discussed, especially if the percentage of 15 -year-olds to be excluded was more than 0.5% or if it was substantially different or not noted for previous PISA cycles.
- Calculations did not have to be verified as in previous cycles as such data checks were built into the form.
- For any countries/economies using a three-stage design, a Sampling Task 7a form needed to be completed for the full national desired population as well as for the population in the sampled regions.
- For countries/economies having adjudicated regions, a Sampling Task 7a form was needed for each region.
- Data sources and the year of the data were required. If websites were provided with an English page option, the submitted data was verified against those sources.

Sampling task 7b: National defined target population

- The population value in the first question needed to correspond with the final population value on the form for Sampling Task 7a. This was accomplished through built-in data checks.
- Reasons for excluding schools for reasons other than special education needs were checked for appropriateness (i.e. some operational difficulty in assessing the school). In particular, school-level language exclusions were closely examined to check correspondence with what had been noted about language exclusions on Sampling Task 0.
- Exclusion types and extents were compared to those recorded for PISA 2015 and previous cycles. Differences were queried.
- The number and percentage of students to be excluded at the school level and whether the percentage was less than the guideline for maximum percentage allowed for such exclusions were checked.
- Reasonableness of assumptions about within-school exclusions was assessed by checking previous PISA coverage tables. If there was an estimate noted for "other", the country/economy was queried for reasonableness about what the "other" category represented. If it was known the country/economy had schools where some of the students received instruction in minority languages not being tested, an estimate for the withinschool exclusion category for "no materials available in the student's language of instruction" was necessary.
- Form calculations were verified through built-in data checks, and the overall coverage figures were assessed.
- If it was noted that there was a desire to exclude schools with only one or two PISA-eligible students at the time of contact, then the school sampling frame was checked for the percentage of population that would be excluded. If countries/economies had not met the 2.5% school-exclusion guideline and if these schools would account for not more than 0.5\% and if within-school exclusions looked similar to the past and were within 2.5%, then the exclusion of these schools at the time of contact was agreed upon with the understanding that such exclusion not cause entire strata to be missing from the student data.
- The population figures on this form after school-level exclusions were compared against the aggregated school sampling frame enrolment. School-level exclusion totals also were compared to those tabulated from the excluded school sheet of the Sampling frame, ST8b. Differences were queried.
- For any countries/economies using a three-stage design, a Sampling Task 7b form also needed to be completed for the full national defined population as well as for the population in the sampled regions.
- For countries/economies having adjudicated regions, a Sampling Task 7b form was needed for each region.
- Data sources and the year of the data were required. If websites were provided with an English page option, the submitted data was verified against those sources.

Sampling task 8a: Sampling frame description

- Special attention was given to countries/economies who reported on this form that a threestage sampling design was to be implemented and additional information was sought from countries/economies in such cases to ensure that the first-stage sampling was done adequately.
- The type of school-level enrolment estimate, and the year of data availability were assessed for reasonableness.
- Countries/economies were asked to provide information for each of various school types, ${ }^{2}$ whether those schools were included on or excluded from the sampling frame, or the country/economy did not have any of such schools. The information was matched to the different types of schools containing PISA students noted on Sampling Task 2. Any discrepancies were queried.
- Any school types noted as being excluded were verified as school-level exclusions on the Sampling Task 7 b form. Any discrepancies were queried.

Sampling task 8b: Sampling frame

- On the spreadsheet for school-level exclusions, the number of schools and the total enrolment figures, as well as the reasons for exclusion, were checked to ensure correspondence with values reported on the Sampling Task 7b form detailing school-level exclusions. It was verified that this list of excluded schools did not have any schools which were excluded for having only one or two PISA-eligible students, as these schools were not to be excluded from the school sampling frame. Checks were done to ensure that excluded schools did not still appear on the other spreadsheet containing the school sampling frame.
- All units on the school sampling frame were confirmed to be those reported on the Sampling Task 2 as sampling frame units. The sampling unit frame number was compared to the corresponding frame for PISA 2015 as well as previous cycles. Differences were queried.
- NPMs were queried about whether or not they had included schools with grades 7 or 8 , or in some cases those with grades 10 or higher, which could potentially have PISA-eligible students at the time of assessment even if the school currently did not have any.
- NPMs were queried about whether they had included vocational or apprenticeship schools, schools with only part-time students, international or foreign schools, schools not under the control of the Ministry of Education, or any other irregular schools that could contain PISAeligible students at the time of the assessment, even if such schools were not usually included in other national surveys.
- The frame was checked for all required variables: a national school identifier with no duplicate values, a variable containing the school enrolment of PISA-eligible students, and all the explicit and implicit stratification variables. Stratification variables were checked to make sure none had missing values and only had levels as noted on Sampling Task 2.
- Any additional school sampling frame variables were assessed for usefulness. In some instances other variables were noted on the school frame that might also have been useful for stratification.
- The frame was checked for schools with only one or two PISA-eligible students. If no schools were found with extremely low counts, but the country/economy's previous sampling frames had some, this was queried.
- The frame was checked for schools with zero enrolment. If there were none, this was assessed for reasonableness. If some existed, it was verified with the NPM that these schools could possibly have PISA-eligible students at the time of the assessment.
- All explicit strata had to be accounted for on the form for Sampling Task 9.
- All explicit strata population entries were compared to those determined from the sampling frame.
- All small-school analysis calculations were verified.
- It was verified that separate small-school analyses were done for adjudicated or nonadjudicated oversampled regions (if these were different from explicit strata).
- Country/economy specified sample sizes were monitored, and revised if necessary, to be sure minimum sample sizes were being met.
- The calculations for school allocation were checked to ensure that schools were allocated to explicit strata based on explicit stratum student percentages and not explicit stratum school percentages, that all explicit strata had at least two allocated schools, and that no explicit stratum had only one remaining non-sampled school.
- It was verified that the allocation matched the results of the explicit strata small school analyses, with allowances for random deviations in the numbers of very small, moderately small, and large schools to be sampled in each explicit stratum.
- The percentage of students in the sample for each explicit stratum had to be approximate to the percentage in the population for each stratum (except in the case of oversampling).
- The overall number of schools to be sampled was checked to ensure that at least 150 schools would be sampled.
- The overall expected number of assessed students was checked to ensure that at least 6300 assessed students in CBA countries/economies with GC, and 5250 assessed students in PBA countries/economies and CBA countries/economies without GC, were expected.
- Previous PISA response rates were reviewed and if deemed necessary, sample size increases were suggested.

Sampling task 10: School sample selection

- All calculations were verified, including those needed for national study overlap control.
- Particular attention was paid to the required four decimal places for the sampling interval and the generated random number.
- The frame was checked for proper sorting according to the implicit stratification scheme, for enrolment values, and the proper assignment of the measure of size value, especially for very small and moderately small schools. The assignment of replacement schools and PISA identification numbers were checked to ensure that all rules established in the Sampling Preparation Manual set of documents were adhered to.

Sampling task 11: Reviewing and agreeing to the Sampling Form

- The form for Sampling Task 11 was prepared as part of the sample selection process. After the international contractor verified that all entries were correct, NPMs had to perform the same checks and to agree to the content in this form as quickly as possible.

Sampling task 12: School participation and data validity checks

- Extensive checks were completed on Sampling Task 12 data since it would inform the weighting process. Checks were done to ensure that school participation statuses were valid, student participation statuses had been correctly assigned, and all student sampling data required for weighting were available and correct for all student sampling options.

Quality checks also highlighted schools having only one grade with PISA-eligible students, only one gender of PISA-eligible students, or schools which had noticeable differences in enrolled student counts than expected based on sampling frame enrolment information. Such situations were queried.

- Large differences in overall grade and gender distributions compared to unweighted 2015 data were queried.
- Uneven distributions of student birth months were queried when such distributions differed from unweighted 2015 data.
- These data also provided initial unweighted school and student response rates. Any potential response rate issues were discussed with NPMs if it seemed likely that a nonresponse bias report might be needed.
- Large differences in response rates compared to PISA 2015 were queried.

STUDENT SAMPLES

Student selection procedures in the main study were the same as those used in the field trial. Student sampling was undertaken using the international contractor software, KeyQuest, at the national centres from lists of all PISA-eligible students in each school that had agreed to participate. These lists could have been prepared at the national, regional, or local levels as data files, computer-generated listings, or by hand, depending on who had the most accurate information. Since it was important that the student sample be selected from accurate, complete lists, the lists needed to be prepared slightly in advance of the testing period and had to list all PISA-eligible students. It was suggested that the lists be received one to two months before the testing period so that the NPM would have adequate time to select the student samples.

Three countries (Germany, Iceland and Italy) chose student samples that included students aged $15 \mathrm{and} /$ or enrolled in a specific grade (e.g. grade 10). Thus, a larger overall sample, including 15 -year-old students and students in the designated grade (who may or may not have been aged 15) was selected. The necessary steps in selecting larger samples are noted where appropriate in the following details:

- Germany supplemented the standard sampling method with an additional sample of gradeeligible students which was selected by first selecting a grade 9 class within PISA-sampled schools (except for vocational schools) that had this grade. Prior to PISA 2015, Germany assessed all the class-sampled students. For PISA 2018, as in PISA 2015, to reduce the number of students needing to be assessed for their grade sample from the sampled class, Germany randomly sub-sampled 15 students eligible for the class sample only to participate; the other students eligible only for the class sample were treated as nonrespondents. Since non-response in this case was random, these students were accounted for in the optional grade sample through student non-response adjustments.
- Iceland had a school census and a student census of PISA-eligible students, as well as a census of grade 10 students.
- Italy selected a grade 10 sample using an alternative direct student sampling method, where the sampling interval in a school was calculated over the full student list in the school, which included PISA-eligible students and non-PISA-eligible grade 10 students. This differed from the 2015 approach, where Italy selected a grade 10 sample by selecting a sample of grade 10 classes, and all students from the selected classes were included in the sample.

Four countries (Denmark, Ireland, Russia, and Luxembourg) selected, in addition to PISA students, national-option-eligible-only students to also do the PISA assessments.

Preparing a list of age-eligible students

Each school participating in PISA had to prepare a list of age-eligible students that included all 15 -year-olds (using the appropriate 12 -month age span agreed upon for each participating country/economy) in international grades 7 or higher. In addition, each school drawing an additional grade sample also had to include grade-eligible students that included all PISAeligible students in the designated grade (e.g. grade 10). In addition, if a country/economy had chosen the international option of the Teacher Questionnaire (see below), eligible teachers were also listed on this form. This form was referred to as a student listing form. The following were considered important:

- Age-eligible students were all students born in 2002 (or the appropriate 12-month age span agreed upon for the participating country/economy). With additional grade samples, including grade-eligible students was also important.
- The list was to include students who might not be tested due to a disability or limited language proficiency.
- Students who could not be tested were to be excluded from the assessment after the student listing form was created and after the student sample was selected. It was stressed to national centres that students were to be excluded after the student sample was drawn, not prior.
- It was suggested that schools retain a copy of the student list in case the NPM had to contact the school with questions.
- Student lists were to be up-to-date close to the time of student sampling rather than a list prepared at the beginning of the school year.

Selecting the student sample

Once NPMs received the list of PISA-eligible students from a school, the student sample was to be selected and the list of selected students returned to the school via a student tracking form. An equal probability sample of PISA students was selected, using systematic sampling, where the lists of students were first sorted by grade and gender. NPMs were required to use KeyQuest, the international contractor sampling software, to select the student samples unless otherwise agreed upon. For PISA 2018, all countries/economies used KeyQuest.

Preparing instructions for excluding students

PISA was a timed assessment administered in the instructional language(s) of each participating country/economy and designed to be as inclusive as possible. For students with limited assessment language(s) experience or with physical, mental, or emotional disabilities who could not participate, PISA developed instructions in cases of doubt about whether a selected student should be assessed. NPMs used the guidelines to develop any additional instructions; school co-ordinators and test administrators needed precise instructions for exclusions. The national operational definitions for within-school exclusions were to be clearly documented and submitted to the international contractor for review before testing.

Sending the student tracking form to the school co-ordinator and test administrator

The school co-ordinator needed to know which students were sampled in order to notify students, parents, and teachers, and in order to update information and to identify students to be excluded. The student tracking form was therefore sent approximately two weeks before the testing period. It was recommended that a copy of the tracking form be kept at the national centre and the NPM send a copy of the form to the test administrator in case the school copy was misplaced before the assessment day. The test administrator and school co-ordinator manuals (see Chapter 6) both assumed that each would have a copy.

In the interest of ensuring that PISA was as inclusive as possible, student participation and reasons for exclusion were separately coded in the student tracking form. This allowed for special education needs (SEN) students to be included when their needs were not serious enough to be an impediment to their participation. The participation status could therefore detail, for example, that a student participated and was not excluded for special education needs reasons even though the student was noted with a special education need. Any student whose participation status indicated they were excluded for special education needs reasons had to have an SEN code that explained the reason for exclusion. It was important that these criteria were followed strictly for the study to be comparable within and across participating countries/economies. School co-ordinators and test administrators were told to include students when in doubt. The instructions for excluding students are provided in the PISA Technical Standards (Annex F).

TEACHER SAMPLES

For PISA 2018, as in PISA 2015, a limited number of countries/economies elected to take an international option in which teachers were sampled in each sampled school. Data from the teacher questionnaire (TQ) was intended to be used to add context to student data from the same school, that is, to describe the learning environment of typical 15 -year-old students in the country/economy. Therefore, the TQ focused on the grade level that most 15 -year-old students in the country/economy attend, or in other words, the national modal grade for 15-year-old students. If an adjacent grade level was attended by thirty percent or more of 15 -year-old students in the country/economy, both grade levels were used as modal grades.

A teacher was defined as "one whose primary or major activity in the school is student instruction, involving the delivery of lessons to students. Teachers may work with students as an intact class in a classroom, in small groups in a resource room or one-to-one inside or outside regular classrooms."

In order to cover a broader variety of perspectives, and guarantee samples that were large enough, teachers who CAN or WILL be teaching the PISA modal grade in a later year were also considered to belong to the teacher target population. This applied also for teachers who had been teaching the modal grade in the past who were still in the school. Thus, sampling for teachers included ALL teachers that were eligible for teaching the modal grade - whether they were doing so currently, had done so in the past, or will/could do so in the future.

Teachers were listed and sampled in KeyQuest as either part of Population 4 (reading/language arts teachers) or Population 5 (teachers of other subjects). The distinction between Population 4 and Population 5 is determined by the meaning of reading/language arts. Reading/language arts lessons are the lessons in which reading comprehension, literature, and other language
skills are mostly taught, according to the national/state curriculum. Teachers who teach reading/language arts lessons are included in Population 4, while other eligible teachers are included in Population 5.

Ten reading/language teachers were sampled in schools having at least that many listed, or all such teachers, if there were fewer than ten. Fifteen teachers of other subjects were sampled in schools having at least that many listed, or all such teachers, if there were fewer than 15 . Within each teacher population (reading/language and non-reading/language) an equal probability sample of teachers was selected, using systematic sampling where the lists of teachers were first sorted by grade and gender, where grade had codes indicating whether the teacher was currently teaching the modal grade.

DEFINITION OF SCHOOL

Although the definition of a "school" is not always straight forward, PISA generally aims to sample whole schools as the first stage units of selection, rather than programmes or tracks or shifts within schools, so that the meaning of "between school variance" is more comparable across countries/economies.

There are exceptions to this, such as when school shifts are more like separate schools than part of the same overall school. However, in some countries/economies with school shifts, this is not the case, and therefore whole schools are used as the primary sampling unit. Similarly, many countries/economies have schools with different tracks/programmes, but generally it is recommended again that the school as a whole should be used as the primary sampling unit. There are some exceptions, such as the schools being split for sampling in previous PISA cycles (trends would be affected if the same practice was not continued), or if there is a good reason for doing so (such as to improve previously poor response rates, differential sampling of certain tracks or programmes is desired, etc.).

Sampling units to be used on school-level frames were discussed with each country/economy before the field trial. Table 4.3 presents the comments from NPMs, in cases where "school" was not the unit of sampling. Where the Sampling Unit column indicates School, this means that the school was the sampling unit. Where it shows Other then something else was used, as described in the comments. Table 4.3 shows the extent to which countries/economies do not select schools in PISA, but rather something else.

Table 4.3: Sampling frame units

Country/Jurisdiction	Sampling unit school/other	Sampling frame units comment
Albania	School	
Argentina	Other	Location of schools
Australia	Other	Schools with more than one campus listed as separate entries
Austria	Other	Either whole schools or programmes within schools
Baku City (Azerbaijan)	School	
Belarus	School	

Belgium	Other	French and German speaking communities: a combination of whole schools, or pedagogical-administrative units, which may include different tracks and programmes, and which may also include distinct geographical units. Flanders: implantations, which are tracks/programmes taught on a single address/location (administrative address)
Bosnia and Herzegovina	School	
Brazil	School	
Brunei Darussalam	School	
B-S-J-Z (China)	School	
Bulgaria	School	
Canada	School	
Chile	School	
Colombia	Other	"Sedes," or physical location
Costa Rica	School	
Croatia	School	
Cyprus	School	
	Other	Basic school - whole school special and practical school - whole school gymnasium - pseudo schools according to the length of study (4-year gymnasium and 6- or 8-year gymnasium) upper-secondary vocational - pseudo schools (schools with maturate, schools without maturate)
Czech Republic	School	
School		
Denmark	School	
Dominican Republic	School	
Estonia	School	
Finland	School	
France	School	
FYROM	School	
Georgia	School	
Germany	School	Exceptions in SEN schools
Greece	School	"Gymnasiums with Lyceum Classes" are listed as two different
schools		
Hong Kong (China)	Tracks in parts of schools on different settlements	
Hungary	School	
Iceland	Schol	
Indonesia	Ireland	Italy

Kosovo	School	
Latvia	School	
Lebanon	School	
Lithuania	School	If schools have a main building in one place and another building located in a different area, those separate buildings are listed as separate frame units, and if schools do not have that situation, the whole schools are used as frame units.
Luxembourg	School	
Macao (China)	School	
Malaysia	School	
Malta	School	
Mexico	School	
Moldova	School	
Montenegro	School	Other
Morocco	School	Locations of (parts of) schools, often parts of a larger managerial unit
Netherlands	Other	In addition to the large majority of (grade 1- 10 or grade 8 to 10) "Whole Schools" there are also a few grade 8-13 or grade $1-13$ schools. These "combined grade/level" schools having the same school name are registered individually as primary and upper secondary units.
New Zealand	School	
Norway	School	Study programme within ISCED3 schools and whole ISCED2 schools
School	School	School Slovenia one individual school with 2 organisation units. Each of the Spanana
Seru	School	Other
Philippines	School	Cluster of schools; almost all schools are organised in clusters with a unique principal and teachers belonging to each cluster
Poland	Some schools have two units such SEN programs and regular programs	
Portugal	School programmes	
Qatar	Somania	For public schools, sampling units were whole schools. For private schools, different campuses of private schools were rated as separate sampling units.
Russia	Saudi Arabia	Serbia

Sweden	Other	"School units", some schools have been divided horizontally or vertically so that each part has only one principal
Switzerland	School	
Chinese Taipei	School	
Thailand	School	
Turkey	School	
Ukraine	School	
United Arab Emirates	Other	Separate curricula and also by gender. Whole schools sometimes.
United Kingdom (excl. Scotland)	School	
United Kingdom (Scotland)	School	
United States	School	
Uruguay	Other	Night shift is considered a different school
Viet Nam	School	

REFERENCES

Jaeger, R.M. (1984), Sampling in Education and the Social Sciences, Longman, New York.
OECD and Westat (2016), Sampling in PISA (http://www.oecd.org/pisa/pisaproducts/SAMPLING-IN-PISA.pdf)

